Nonparametric estimation of simpli ed vine copula models: comparison of methods
نویسندگان
چکیده
Thomas Nagler*, Christian Schellhase, and Claudia Czado Nonparametric estimation of simpli ed vine copula models: comparison of methods DOI 10.1515/demo-2017-0007 Received December 27, 2016; accepted May 16, 2017 Abstract: In the last decade, simpli ed vine copula models have been an active area of research. They build a high dimensional probability density from the product of marginals densities and bivariate copula densities. Besides parametric models, several approaches to nonparametric estimation of vine copulas have been proposed. In this article, we extend these approaches and compare them in an extensive simulation study and a real data application. We identify several factors driving the relative performance of the estimators. Themost important one is the strength of dependence. No method was found to be uniformly better than all others. Overall, the kernel estimators performed best, but do worse than penalized B-spline estimators when there is weak dependence and no tail dependence.
منابع مشابه
Nonparametric estimation of pair-copula constructions with the empirical pair-copula
A pair-copula construction is a decomposition of a multivariate copula into a structured system, called regular vine, of bivariate copulae or pair-copulae. The standard practice is to model these pair-copulae parametri-cally, which comes at the cost of a large model risk, with errors propagating throughout the vine structure. The empirical pair-copula proposed in the paper provides a nonparamet...
متن کاملModeling the Dependency Structure between Stocks of Chemical Products Return, Oil Price and Exchange Rate Growth in Iran; an Application of Vine Copula
The main objective of this study is modeling the dependency structure between the returns of oil markets, exchange rate and stocks of chemical products in Iran. For this purpose, the theory of Vine Copula functions is used to investigate the dependency structure. In addition to consider a linear relationship between financial markets in Iran, the nonlinear dependency structure of these markets ...
متن کاملVine Copula Models with GLM and Sparsity
Vine copula provides a flexible tool to capture asymmetry in modelling multivariate distributions. Nevertheless, its flexibility is achieved at the expense of exponentially increasing complexity of the model. To alleviate this issue, the simplifying assumption (SA) is commonly adapted in specific applications of vine copula models. In this paper, generalized linear models (GLMs) are proposed fo...
متن کاملR-vine models for spatial time series with an application to daily mean temperature.
We introduce an extension of R-vine copula models to allow for spatial dependencies and model based prediction at unobserved locations. The proposed spatial R-vine model combines the flexibility of vine copulas with the classical geostatistical idea of modeling spatial dependencies using the distances between the variable locations. In particular, the model is able to capture non-Gaussian spati...
متن کاملA MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION
This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...
متن کامل